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1. INTRODUCTION AND NOTATION

Monic orthogonal polynomials Pn (z, _)=zn+..., n # N0 , on the unit
circle with respect to a nonnegative measure _ are defined by

|
2?

0
e&ij.Pn (ei., _) d_(.)=0 for j=0, 1, ..., n&1 (1.1)

and satisfy the recurrence relation

Pn+1 (z, _)=zPn (z, _)+anPn*(z, _), n # N0 , P0 (z, _)=1, (1.2)

where the parameters an :=an (_) :=Pn+1 (0, _) are called reflection coef-
ficients and satisfy |an |<1 for n # N0=N _ [0]. Here, Pn*(z, _) :=
zn Pn (1�z� , _) is the reversed polynomial.

Throughout this paper we will always assume that _ is normalized by
_([0, 2?])=2? and that its support contains infinitely many points.

It will turn out that it is often more natural to deal with the orthonormal
polynomials

8n (z, _) :=
Pn (z, _)

- dn

=
zn

- dn

+..., n # N0 , (1.3)

where dn :=>n&1
j=0 (1&|aj |

2), which satisfy

1
2? |

2?

0
8n (ei., _) 8m (ei., _) d_(.)=$nm .

In this paper we study orthogonality measures and orthogonal polyno-
mials, whose reflection coefficients are asymptotically periodic and of
bounded variation (moduloN), where N # N is fixed. This means: there
exist values a0

0 , ..., a0
N&1 , |a0

j |<1, such that

lim
& � �

a&N+ j=a0
j for j=0, 1, ..., N&1, (1.4)

and

:
�

n=0

|an&an+N |<�. (1.5)

In [12, 14] the authors have investigated the asymptotic behaviour of
the ``asymptotically periodic'' orthogonal polynomials 8n (z, _) for n � �
outside the support of the measure of orthogonality and in [15] also on
the support. The reader should also compare the recent papers by
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Bello�Lo� pez [2] and Barrios�Lo� pez [3], where ratio asymptotics of the
orthogonal polynomials are given. In this contribution we deal with the
question how the orthogonality measure respectively its absolutely con-
tinuous part f can be described with the aid of the related orthogonal poly-
nomials. As an interesting byproduct we obtain that the orthogonality
measure is (up to N points) absolutely continuous on the circumference, if
the reflection coefficients [an] are of bounded variation (mod N) and satisfy
limn � � an=0. Furthermore, it is shown that, under certain conditions,
adding point measures on the support does not disturb the asymptotic
behaviour of the reflection coefficients. Finally, heavily based on the results
of Widom [18], we prove that polynomials orthogonal with respect to
weight functions which satisfy a generalized Szego� condition have
asymptotically periodic reflection coefficients, if there exists a so-called
T-polynomial on the arcs. But first of all, in Section 2, we will give some basic
properties of the ``periodic'' orthogonal polynomials Pn (z, _0) generated by
the periodic sequence of reflection coefficients [a0

n], a0
n+N=a0

n , which will
be essential in the proofs of our results. In Section 4 we will give the proofs.

2. THE KNOWN PERIODIC CASE

In this section we collect properties of orthogonal polynomials, which
are generated by the sequence [a0

n] of periodic reflection coefficients,

a0
n=a0

n+N , n # N0 , N # N fixed,

and denoted by Pn (z, _0), i.e., _0 is the corresponding orthogonality
measure. Such polynomials resp. measures have mainly been studied by
Geronimus [4, 5, 6] and in the last years also by the authors [11, 12] and
we will mainly refer to the latter paper.

It is known that the support of _0 consists of l, l�N, disjoint subinter-
vals of [0, 2?] and at most of a finite number of points outside the
intervals. Let us denote these intervals by

El := .
l

j=1

[.2j&1 , .2j], (2.1)

where the .k 's, k=1, ..., 2l, are pairwise distinct. For the corresponding
arcs on the unit circle we write

1El
:=[e i. : . # El].

The set El and the measure _0 can completely be described by the
orthogonal polynomials themselves in the following way: Let [0n (z, _0)]

98 PEHERSTORFER AND STEINBAUER



be the monic polynomials of the second kind corresponding to Pn (z, _0),
which are recursively given by

0n+1 (z, _0) :=z0n (z, _0)&a0
n0n*(z, _0), 00 (, _0) :=1.

Note the opposite sign in front of a0
n .

Next we define the value

L :=2 \ `
N-1

j=0

(1&|a0
j |2++

1�2

=2 - d 0
N (2.2)

and the monic polynomials

T(z) := 1
2 (PN (z, _0)+0N (z, _0)+P*N (z, _0)+0*N (z, _0))=zN+ } } }

(2.3)
R(z):=R(z) U2(z) :=T2(z)&L2zN=z2N+ } } } .

Then it can be shown that R has all its zeros on |z|=1. The selfreversed
polynomial R is of degree 2l and vanishes exactly at the boundary points
ei.j, j=1, ..., 2l, of the arcs. Moreover, there are exactly N&l (N=l is
possible) double roots in [ei.: . # int E l]. Thus, in (2.3) the polynomial U

is selfreversed, of degree N&l, and vanishes exactly at the double zeros of
R. Now, the set El can be expressed with the aid of the polynomials R and
T, respectively, by

El=[. # [0, 2?] : e&il.R(ei.)�0]=[. # [0, 2?] : |T(ei.)|�L]. (2.4)

Note that R is a selfreversed polynomial; thus e&il.R(ei.) is a real
trigonometric polynomial.

Let us also point out that it can be shown with the help of (2.3) that

}T(z)+- R(z) U(z)
L }=1 for all z # 1El

, (2.5)

whereas

} T(z)+- R(z) U(z)
L }>1 on C"1El

;

compare also [12, Lemma 3.1].
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The absolutely continuous part f0 of _0 is given explicitly in terms of the
corresponding orthogonal polynomials by

f0 (.)={}
- R(ei.)

V(ei.) A(ei.) }, . # E l
(2.5)

0, . � El ,

where

A(z) :=V(z) A(z) :=
P*N (z, _0)&PN (z, _0)

U(z)
# P l . (2.6)

Here, the selfreversed polynomial V contains exactly those zeros of A,
which lie on the set [ei.j : j=1, ..., 2l]. All the zeros of the polynomial A
are outside 1El

.
The singular part of _0 consists of at most a finite number of mass points

and as far as they appear they are located outside El at (some of the) zeros
of A; to be more precise, at points ! where A(ei!)=0.

In order to state our results on the ``asymptotically periodic'' measure _,
it will be useful to introduce also the following notation: Since T, U, and
R are selfreversed polynomials the settings

{(.) :=e&i(N�2) .T(e i.)

u(.) :=e&i((N&l)�2) .U(ei.) (2.7)

R(.) :=e&il. R(ei.)

. # [0, 2?], give real trigonometric polynomials. Further, let

r(.) :={ie&i(l�2).
- R(ei.)=(&1) j+1

- |R(.)|,
e&i(l�2).

- R(ei.)=(&1) j
- |R(.)|,

for . # [.2j&1 , .2j]
for . # [.2j , .2j+1],

(2.8)

with .0 :=0 and .2l+1 :=2?, be a real continuous square-root function,
which changes sign from the interval [.2j&1 , .2j] to the interval
[.2j+1 , .2j+2].

With this notation the function f0 from (2.5) can also be written as

f0 (.)={
r(.)

V(.) A(.)
�0, . # El

(2.9)

0, . � El ,
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where (VA)(.) :=ie&i(l�2). (VA)(ei.) is again a real trigonometric polyno-
mial.

3. APPROXIMATING THE MEASURE _

In (2.5) we have seen, how the absolutely continuous part f0 of the ``peri-
odic'' measure _0 can be represented with the help of the corresponding
orthonormal polynomials 8n (z, _0). Naturally the question arises, if there
holds a similar representation for ``asymptotically periodic'' measures _, or
in other words, is it possible to describe the orthogonality measure respec-
tively its absolutely continuous part f with the aid of the related orthogonal
polynomials?

If condition (1.4) is satisfied then the accumulation points of supp(_)
and supp(_0) coincide, i.e.,

(supp(_))$=(supp(_0))$. (3.1)

For N=1 this fact has been proved in [9, Theorem 3]. The proof given in
[9] can easily be extended to the general case N # N. Hence, the support
supp(_), where _ denotes the perturbed measure in the sense of (1.4), also
consists of the l intervals El and at most a denumerable number of points
in [0, 2?) outside the intervals. Moreover, the end-points of El , i.e.,
.1 , ..., .2l , are the only possible accumulation points of the mass points,
which all lie outside of El .

We begin with the following definition:

3n (z) :=
iL

2zn+l�2U(z) }
8n (z, _) 8n+N (z, _)
8n*(z, _) 8*n+N(z, _) }

=
iL(8n (z, _) 8*n+N(z, _)&8n*(z, _) 8n+N (z, _))

2zn+l�2 U(z)
, n # N0 .

(3.2)

Let us point out that for _=_0

3n (z)=iz&l�2V(z) A(z) and 3n (ei.)=V(.) A(.);

recall (2.5) and (2.9). Hence, we expect that for _ ``close'' to _0 and for suf-
ficiently large n the function 3n (ei.) will describe the weight function on
the support.
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Applying the recurrence relation (1.2) several times, the function 3n can
be expanded in the series (compare [12, formula (4.10)])

3n (z)=
iL*n

2z&(N&1)�2U(z) \
8*N &8N

zN�2 + :
n&1

&=0

;&

z&+1+N�2 {(a& &a&+N) 8&*8*&+N

+z(a&a� &+N &a� &a&+N) 8&*8&+N &z2 (a� & &a� &+N) 8&8&+N]=+ ,

(3.3)

where 8& stands for 8& (z, _) and where

*n := `
n&1

j=0
\1&a� jaj+N

1&|aj |
2 + , ;& :=

1
1&|a& |2 `

&

j=0
\ 1&|a j |

2

1&a� ja j+N + .

By its definition,

�n (.) :=3n (ei.)

is a real trigonometric polynomial, which coincides with V(.) A(.) if
_=_0 . As the following theorem shows �n approximates the absolutely
continuous part of _.

Theorem 1. Let the assumptions (1.4) and (1.5) be satisfied and let us
denote the absolutely continuous part of _ by f. The function r is given as in
(2.8). Then f vanishes outside El and there holds

lim
n � �

�n (.)=: �(.)=
r(.)
f (.)

(3.4)

uniformly on compact subsets of int El"[�1 , ..., �N&l], where the �j 's are
the zeros of u(.); compare (2.7) and the definition of U in (2.3). Further-
more, _ is absolutely continuous on int El "[�1 , ..., �N&l] and f is positive
and continuous there. K

Remark. Under the stronger assumption (3.7), see below, the limit rela-
tion (3.4) follows immediately from [12, Theorem 4.1]3, even uniformly
compact on int El . It remains to be shown that the result also holds true
under the weaker condition (1.5).

From the above theorem we can also derive a result for the unit circle.
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Corollary 1. Let [an=Pn+1 (0, _)]n # N0
be a sequence of reflection

coefficients from Nevai 's class, i.e., limn � � an=0. Further suppose that
there exists a positive integer N such that condition (1.5) holds. Then
the corresponding measure _ is absolutely continuous on [0, 2?]"
[2?k�N : k=0, ..., N&1], f (.)=_$(.) is positive and continuous there and
can be written as

f (.)=
2 sin(N�2) .

�(.)
, . # [0, 2?]"{2?k

N
: k=0, ..., N&1= ,

where the real function � is given as in Theorem 1. K

Remark. In particular, from Corollary 1 we see that there are no mass
points in [0, 2?]"[2?k�N: k=0, ..., N&1] if an � 0 and if (1.5) is satisfied.
For instance, (1.5) is a consequence of the Geronimus' condition
��

n=0 |an |<� and this latter condition implies that _ is absolutely con-
tinuous on [0, 2?]. But obviously (1.5) is much weaker than Geronimus'
condition, as the examples [an=1�n] or [an=1�- n] show (the last
sequence is even outside the Szego� class).

Let us also give another method of representing the absolutely con-
tinuous part of _ with the aid of the orthonormal polynomials. Therefore,
we define the following functions (for the motivation of these definitions
compare the proof of Theorem 2 below):

S1, n (z)=
+n

2i
:

n&1

&=0

}&

z&+1 {z(a0
&a� & &a� 0

&a&) 8&*(z, _0) 8& (z, _)

=&z2 (a� 0
&&a� &) 8& (z, _0) 8& (z, _)+(a0

&&a&) 8&*(z, _0) 8&*(z, _)=
(3.5)

S2, n (z)=
+� n

2
:

n&1

&=0

}� &

z&+1 {z(a0
&a� & &a� 0

&a&) 9& (z, _0) 8&*(z, _)

=&z2 (a� 0
&&a� &) 9& (z, _0) 8& (z, _)&(a0

&&a&) 9&*(z, _0) 8&*(z, _)=
(3.6)

where

+n= `
n&1

j=0

1&a� 0
j a j

- (1&|a0
j |2)(1&|a j |

2)

}&=
1

- (1&|a0
& | 2)(1&|a& |2)

`
&

j=0

- (1&|a0
j | 2)(1&|a j |

2)

1&a� 0
j aj

.
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The following theorem gives an alternative representation of the
absolutely continuous part of _, where instead of condition (1.5) the
stronger condition (3.7) is needed.

Theorem 2. Suppose that the reflection coefficients [an=Pn+1 (0, _)]
from (1.4) converge sufficiently fast such that the condition

:
�

n=0

|an&a0
n |<� (3.7)

is satisfied. Then the limits

S1 (z) := lim
n � �

S1, n (z) and S2 (z) := lim
n � �

S2, n (z) (3.8)

exist uniformly on compact subsets of [ei.: . # int El]. Let f denote the
absolutely continuous part of the measure _. Then _ is absolutely continuous
on int El , f is positive and continuous there and for all . # int El there holds

iz&l�2V(z)[C(z) S2
1(z)+2iB(z) S1 (z) S2 (z)+A(z) S2

2(z)]

=
r(.)
f (.)

, z=ei., (3.9)

where the function r is given as in (2.8), the polynomial A as in (2.6), and the
polynomials B and C by

B(z)=
0N (z, _0)+0*N (z, _0)&PN (z, _0)&P*N (z, _0)

2V(z) U(z)

C(z)=
0*N (z, _0)&0N (z, _0)

V(z) U(z)
. K

Suppose that the reflection coefficients [an] associated with the
orthogonality measure _ satisfy Szego� 's condition ��

n=0 |an | 2<�. It is
well known (see e.g. [8, 16]) that this is equivalent to Szego� 's condition
�2?

0 log f (.) d.>&� on the orthogonality measure _, where f denotes the
absolutely continuous part of _. Hence, if we add point measures to
such a measure _ the new recurrence coefficients, denoted by (a~ n), will
also satisfy the Szego� condition and therefore the limit relations
limn � � a~ n=limn � � an=0. Let us present a similar result for several arcs.

Theorem 3. Let _ be a measure whose reflection coefficients [an (_)]
are asymptotically periodic and satisfy (1.5). Furthermore, let [:j]M

j=1 be
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given points from int El"[�1 , ..., �N&l] (recall the definition in Theorem 1)
and define the new measure by

+(.) :=c \_(.)+ :
M

j=1

* j $: j
(.)+ , * j�0, c>0.

Here, $: j
denotes the Dirac-measure with mass at :j and c is the normaliza-

tion factor such that +([0, 2?])=2?. Then the reflection coefficients
[an (+)] associated with the measure + are again asymptotically periodic and
there holds

lim
n � �

(an (+)&an (_))=0. K (3.10)

Remark. Note that the bounded variation condition (1.5) is not pre-
served in general for the modified measure +.

Remark. (a) Under the stronger assumption (3.7) the statement of
Theorem 3 holds true for all added mass points from int El , i.e., there are
no forbidden points in El . This follows from the uniform boundedness of
the orthonormal polynomials on compact subsets of int El (see [12,
Cor. 2.2]).

(b) Let us point out that a limit relation such as (3.10) does not hold
true in general, if the mass points :j are chosen outside the set El as the
following simple example shows: Let

an (_) :=
1

- 2
and an (+) := &

1

- 2

for all n # N0 . Then, obviously, an (_)&an (+) �% 0 as n � 0. But the
measures _ and + only differ by a mass point at .=0: From [6] or from
[11] one can show that _ is absolutely continuous with

d_(.)=_$(.) d.={
1

- 2&1

- &cos .
sin .�2

d., . # _?
2

,
3?
0 &

0, else

and

+(.)=
- 2&1

- 2+1 \_(.)+
4?

- 2&1
$0 (.)+ .

Recall that .=0 � E1=[?�2, 3?�2]. Concerning point measures see also
[13].
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Finally, we also would like to state the following theorem which gives a
Szego� -type result for arcs of the unit circle and which has a reverse-
character in that sense that it starts from properties of the orthogonality
measure and gives information about the corresponding reflection coef-
ficients. In [11] we have shown that the existence of a so-called T-polyno-
mial T (compare the definition (3.12) below) on the arcs

1 := .
l

j=1

1j with 1j :=[ei.2 j&1, ei.2 j],

.1<.2< } } } <.2l<.1+2?, implies that weight functions of the form
(recall (2.5))

} - R(e i.)
V(ei.) A(ei.) } on the arcs and zero elsewhere (3.11)

have periodic reflection coefficients. A selfreversed polynomial T of degree
N, N�l, is called a T-polynomial on 1, if it satisfies the condition (compare
also the second line in (2.3))

T2 (z)&R(z) U2 (z)=L2zN, (3.12)

where U is a selfreversed polynomial of degree N&l and where L is a
positive constant. Therefore, we expect that suitable ``perturbations'' of
weight functions of the form (3.11) will lead to asymptotically periodic
reflection coefficients.

Notation. We say that 1=� l
j=1 1j belongs to the class P(N) if there

exists a T-polynomial T of degree N, N�l, which satisfies (3.12).

Let us point out that we have proved in [14] that condition (3.12), i.e.,
1 # P(N), is equivalent to the fact that the harmonic measure |(1j , �) of
every arc 1j gives a rational number of the form kj �N. Recall the definition
of the harmonic measure of 1j at �:

|(1j , �)=
1

2? �
1 j

�
�n!

g(!) |d!|,

where (���n!) is the normal derivative at ! and where g(!) :=g(!, �)
denotes the (real) Green's function for the set C� "1 with pole at �.

Based on results of Widom [18] we are now able to show

Theorem 4. Assume that the union of the l disjoint arcs 1=
�l

j=1 [e i.2 j&1, ei.2 j], .1<.2< } } } <.2l<.1+2?, belongs to P(N),
N # N"[1, ..., l&1], and put El :=[.: ei. # 1]. Further suppose that
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d_(.)= f (.) d. is a positive and absolutely continuous measure on El

and that f (.) satisfies the generalized Szego� condition �.2 j
.2 j&1

log f (.)�
- sin((.&.2 j&1)�2) sin((.2 j&.)�2) d.>&� for j=1, ..., l. Then the
reflection coefficients [an (_)] are asymptotically periodic, i.e., there exist
values a0

0 , ..., a0
N&1 # C, |a0

k |<1 for k=0, ..., N&1, such that

lim
m � �

ak+mN(_)=a0
k for k=0, ..., N&1. (3.13)

Let us mention that the polynomial PN (z, _0) generated by the reflection
coefficients a0

0 , ..., a0
N&1 from (3.13) and its polynomial of the second kind

0N (z, _0) give the T-polynomial T on 1 by the relation

T(z)= 1
2 (PN (z, _0)+0N (z, _0)+P*N (z, _0)+0*N (z, _0)).

This follows from (3.1) and [11, Theorem 4.3] (compare also (2.3)).

4. PROOFS

Let us begin with the following

Definition. The monic k-associated polynomials, resp. the monic
associated polynomials of the second kind, k # N0 , are given by the shifted
recurrence formula

P (k)
n+1 (z, _) :=zP (k)

n (z, _)+an+kPn
(k)*(z, _), P (k)

0 (z, _) :=1

0(k)
n+1 (z, _) :=z0 (k)

n (z, _)+an+k0n
(k)*(z, _), 0 (k)

0 (z, _) :=1.

For k=0 we simply write again P (0)
n =Pn and 0 (0)

n =0n , respectively.

Proof of Theorem 1. If we can show that the polynomials 8n (e i., _) are
uniformly bounded on compact subsets of int El "[�1 , ..., �N&l] then by
(1.5) and (3.3) the limit

�(.) := lim
n � �

�n (.) (4.1)

exists uniformly compact on int El "[�1 , ..., �N&l]. For the proof of the
boundedness of the orthonormal polynomials 8n (z, _) we follow some
ideas given in [12, Lemma 3.2 and Theorem 3.4]: For the rest of the proof
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we will write Pn (z), 0n (z), etc. instead of Pn (z, _), 0n (z, _), etc.. Motivated
by (2.2) and (2.3), respectively, let us define the polynomials, n # N0 ,

T[n] (z) := 1
2 (P (n)

N (z)+0 (n)
N (z)+P (n)

N *(z)+0 (n)
N *(z))

R[n] (z) U[n] 2 (z) :=T[n] 2 (z)&L[n] 2zN,

L[n] :=2 \ `
N&1

j=0

(1&|an+j |
2)+

1�2

,

where the P(n)
N 's (0 (n)

N 's) denotes the n th monic associated polynomials (of
the second kind) and where R[n] has only simple zeros. Further, let the
functions y[n]

\ be given by

y[n]
\ (z) :=

T[n] (z)\- R[n] (z) U[n] (z)
L[n] , n # N0 ,

where - R[n] (e i.) :=lims � 1& - R[n] (se i.). Then, in a similar way as in the
proof of [12, Lemma 3.2], one can derive the following relations

8m+(&+2) N& y[m+(&+1) N]
\ 8m+(&+1) N

=
L[m+&N]

L[m+(&+1) N] y[m+&N]
� (8m+(&+1) N &y[m+&N]

\ 8m+&N )

+
2$\

m+&N

L[m+(&+1) N] ,

where

$\
n =[en+ 1

2 (L[n] y[n]
\ &L[n+N] y[n+N]

\ )] 8n+N+ fn 8*n+N

en= 1
2 (P(n+N )

N +0 (n+N )
N &P (n)

N &0 (n)
N )

fn= 1
2 (P(n+N )

N &0 (n+N )
N &P (n)

N +0 (n)
N ),

and by iterating the above identity

8m+(&+2) N& y[m+(&+1) N]
\ 8m+(&+1) N

=
L[m]

L[m+(&+1) N] \ `
&

j=0

y[m+ jN]
� + [8m+N& y[m]

\ 8m ]

+
2

L[m+(&+1) N] :
&

j=0
\ `

&

k+ j+1

y[m+kN]
� + $\

m+ jN .
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Hence,

2 - R[m+(&+1) N] U[m+(&+1) N]

L[m+(&+1) N] 8m+(&+1) N

=(8m+(&+2) N& y[m+(&+1) N]
& 8m+(&+1) N )

&(8m+(&+2) N & y[m+(&+1) N]
+ 8m+(&+1) N )

=
L[m]

L[m+(&+1) N] {\ y[m]
+ `

&

j=0

y[m+ jN]
& & y[m]

& `
&

j=0

y[m+ jN]
+ + 8m

+\ `
&

j=0

y[m+ jN]
+ & `

&

j=0

y[m+ jN]
& + 8m+N=

+
2

L[m+(&+1) N] :
&

j=0 \$&
m+ jN `

&

k= j+1

y[m+kN]
+

&$+
m+ jN `

&

k= j+1

y[m+kN]
& +

or equivalently

2 - R[m+&N] U[m+&N] 8m+(&+1) N

=L[m] {\y[m]
+ `

&

j=0

y[m+ jN]
& & y[m]

& `
&

j=0

y[m+ jN]
+ + 8m

+\ `
&

j=0

y[m+ jN]
+ & `

&

j=0

y[m+ jN]
& + 8m+N=

+2 :
&&1

j=0
\$&

m+ jN `
&

k= j+1

y[m+kN]
+ &$+

m+ jN `
&

k= j+1

y[m+kN]
& + . (4.2)

Let us now consider an arbitrary (but fixed) compact subset E of
int El"[�1 , ..., �N&l]. Since R[n] � R, U[n] � U, and T[n] � T uniformly
compact on C as n � � we can choose an index m=m(E) as large such
that for all n�m

|R[n] (e i.) U[n]2(ei.)|�'(E)>0 and | y[n]
\ (ei.)|=1

on [ei.: . # E]; recall (2.4) and (2.5). Now, applying triangle-inequality to
(4.2) gives

|8m+(&+1) N(z, _)|�c1 (E)+c2 (E) :
&&1

j=0
\ :

m+( j+1) N&1

k=m+ jN

|ak+N&ak |+
_|8m+( j+1) N(z)|
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for all z # [ei.: . # E], where c1 (E) and c2 (E) are positive constants only
depending on the set E and where we used the well known identity
|8n (e i.)|=|8n*(ei.)| for all n # N. Then from the discrete version of
Gronwall's inequality (see e.g. [17, (2.12)]) there follows

|8m+(&+1) N(z, _)|�c1 (E) exp \c2 (E) :
n+&N&1

j=m

|a j+N&aj |+
and (1.5) guarantees the uniform boundedness of the polynomials 8n (z, _)
on the subarcs [ei.: . # E]. Thus relation (4.1) is proved.

To finish the proof we have to show that _ is absolutely continuous on
El "[�1 , ..., �N&l] and that the absolutely continuous part f is positive and
continuous there. Since the reflection coefficients of the orthogonal polyno-
mials Pn (z, _) and of the polynomials of the second kind 0n (z, _) only
differ by sign and because of the symmetric definition of the polynomials
T, U, and R, the orthonormalized polynomials of the second kind

9n (z, _) :=
0n (z, _)

- dn

are uniformly bounded on compact subsets of [ei.: . # int E l "[�1 , ...,
�N&l]], in the same way as the 8n (z, _)'s. Now we can apply [9,
Lemma 1], which says that _ is absolutely continuous on closed subsets of
int El"[�1 , ..., �N&l]. The positivity of f on int El "[�1 , ..., �N&l] follows
also from the boundedness of the orthonormal polynomials and from [9,
Lemma 2]. Finally, using the representation (3.2) of the �n 's it follows
from the first statement of Corollary 2 in [15] that (�n f ) converges weakly
to r on compact subsets of El "[�1 , ..., �N&l] and thus by (4.1) and the
continuity of � and r the assertion is proved. K

Proof of Corollary 1. By [7, Theorem 19.1] the relation limn � � an=0
implies that supp(_)=[0, 2?]. The comparison sequence of reflection coef-
ficients [a0

n] is now the constant zero sequence. If we consider this
sequence to be periodic with length of period N we get

T(z)=zN+1 and R(z)=(zN&1)2, U(z)#1,

i.e., N=l, which gives

r(.)=2 sin
N
2

..

Now all the assertions follow from the proof of Theorem 1 which also
holds true for the ``limit''-case, i.e., when the arcs form the whole unit
circle. K
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Proof of Theorem 2. Assumption (3.7) guarantees the uniform boun-
dedness of the orthonormal polynomials 8n (z, _) and of the second kind
polynomials 9n(z, _) on compact subsets of the arcs 1El

; cf. [12,
Lemma 3.1]. This shows the uniform convergence in (3.8) and moreover,
as in the proof of Theorem 1, the absolute continuity of _ and the positivity
of f.

In order to prove relation (3.9), which also implies immediately the con-
tinuity of f on int El , let us start with the following settings:

2n (z) := 1
2 (8n*(z, _) Gn (z, _0)&z8n (z, _) Hn (z, _0)), n # N, (4.3)

where Gn (z, _0) and Hn (z, _0) are the functions of the second kind, given
by

Gn (z, _0) :=
1

2?zn |
2?

0

ei.+z
e i.&z

8n (ei., _0) d_0 (.)

(4.4)

Hn (z, _0) :=
1

2?z |
2?

0

ei.+z
ei.&z

8n (ei., _0) d_0 (.).

Since _0 is a ``periodic'' measure, i.e., it corresponds to periodic reflection
coefficients [a0

n], we also have the following representations; compare [12,
formula (3.7)]:

Gn (z, _0)=
1

znV(z) A(z) \
T(z)&- R(z) U(z)

L +
&

_(- R(z) 8m (z, _0)&U(z) Qm+l (z, _0))
(4.5)

Hn (z, _0)=
1

zn+1V(z) A(z) \
T(z)&- R(z) U(z)

L +
&

_(- R(z) 8*m (z, _0)&U(z) Q*m+l (z, _0)) ,

n=&N+m # N0 . Here, the polynomials Qm+l (z, _0) are given by

U(z) Qm+l (z, _0) :=L8m+N (z, _0)&T(z) 8m (z, _0), m # N0 . (4.6)

The reason for these definitions is that under the assumption (3.7)
Theorem 3.3 in [10] together with (2.9) gives

| lim
n � �

2n (ei.)|2=
r(.)

V(.) A(.) f (.)
, . # E l . (4.7)
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To prove (3.9), we have to give a more explicit representation of the
functions 2n : Let the selfreversed polynomial B be given as in the theorem.
Then it can be shown that the polynomial Qn+l from (4.6) is of the form

Qn+l (z, _0)=&V(z)[A(z) 9n (z, _0)+B(z) 8n (z, _0)],

where 9n (z, _0) :=0n (z, _0)�- d0
n , and we obtain

2n (z)=
1

2znV(z) A(z)
[- R(z) (8n (z, _0) 8*n (z, _)&8n*(z, _0) 8n (z, _))

&(Qn+l (z, _0) 8*n (z, _)&Q*n+l (z, _0) 8n (z, _))]

=
1

2znV(z) A(z)
[(V(z) B(z)+- R(z))(8n (z, _0) 8*n (z, _)

&8n*(z, _0) 8n (z, _))

+V(z) A(z)(9n (z, _0) 8*n (z, _)+9*n (z, _0) 8n (z, _))] .

Now we define the functions

S1, n (z):=
1

2izn (8n (z, _0) 8*n (z, _)&8n*(z, _0) 8n (z, _))

S2, n (z):=
1

2zn (9n (z, _0) 8*n (z, _)+9*n (z, _0) 8n (z, _)),

which indeed coincide with the functions given in (3.5) and (3.6). This can
be seen in a similar way as we proceeded with the function 3n in (3.3)
by expanding in a series of orthonormal polynomials (compare also
[10, Lemma 2.1]). Now we see that S1, n (ei.) and S2, n (ei.) are real
trigonometric polynomials and we can write

2n (z)=\V(z) B(z)+- R(z)
V(z) A(z) + iS1, n (z)+S2, n (z). (4.8)

Using relations (4.8), (3.8), and the definition of VA in the line after (2.9),
it is not difficult to derive the following identities from (4.7):

r(.)
f (.)

=iz&l�2 V(z) A(z) }V(z) B(z)+- R(z)
V(z) A(z)

iS1 (z)+S2 (z) }
2

=iz&l�2V(z) A(z) _(S2 (z)+
iB(z) S1 (z)

A(z) +
2

+
R(z) S2

1 (z)
V 2 (z) A2 (z)& ,
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z=ei., . # int El . Here, we have made use of the fact that iB(z)�A(z) and
- R(z)�V(z) A(z) are real on 1El

. Hence,

r(.)
f (.)

=iz&l�2 _R(z)&V 2 (z) B2 (z)
V(z) A(z)

S2
1 (z)+2iV(z) B(z) S1 (z) S2 (z)

+V(z) A(z) S2
2 (z)&

and assertion (3.9) follows from the representations of the polynomials R,
VA and VB in terms of the polynomials PN (z, _0) and 0N (z, _0). K

Proof of Theorem 3. Some of the ideas used in the following proof can
be found in [8, pp. 38�40]. Let

Kn (z, !, _) := :
n

k=0

8k (z, _) 8k (!, _)

be the reproducing kernel function, also denoted by Christoffel function,
corresponding to the measure _. By its known reproducing property we
can write

8n (z, +)=
1

2? |
2?

0
8n (!, +) Kn (z, !, _) d_(!)

=
1

2?c |
2?

0
8n (!, +) Kn (z, !, _) d+(!)

& :
M

j=1

* j8n (ei: j, +) Kn (z, ei: j, _).

Let }n denote the leading coefficient of the orthonormal polynomials (recall
(1.3), i.e., }n=1�- dn ). Then orthogonality yields

8n (z, +)=
}n (_)

c }n (+)
8n (z, _)& :

M

j=1

*j 8n (ei: j, +) Kn (z, ei: j, _). (4.9)

Comparing the leading coefficients in (4.9) gives the identity

}n (+)
}n (_)

=
}n (_)

c }n (+)
& :

M

j=1

*j8n (ei: j, +) 8n (e i: j, _). (4.10)

Now recall that we have seen in the proof of Theorem 1 that by the loca-
tion of the points :j the sequence [8n (ei: j, _)] is uniformly bounded for
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all n, j # N. Further, the :j 's are mass points of +. Thus, it is well known
that

:
�

n=0

|8n (ei: j, +)|2<�

and consequently

lim
n � �

8n (ei: j, +)=0 for all j # [1, ..., M].

Since all the *j 's are nonnegative and summable, it is not difficult to see
that the sum in (4.10) tends to zero as n � �. Hence,

lim
n � � \}n (+)

}n (_)
&

}n (_)
c }n (+)+=0,

which implies that

lim
n � �

}n (+)
}n (_)

=
1

- c
. (4.11)

Next, we consider representation (4.9) once again, this time at the point
z=0. Using 8n (0)=}nan&1 , we get

}n (+) an&1 (+)=
}2

n(_)
c }n (+)

an&1 (_)& :
M

j=1

* j8n (ei: j, +) Kn (0, ei: j, _)

and from the well known identity, cf. [8, formula (1.7)],

Kn (z, !, _)=
8*n+1(z, _) 8*n+1 (!, _)&8n+1 (z, _) 8n+1 (!, _)

1&z!�
,

i.e.,

Kn (0, ei: j, _)=}n+1 (_) 8*n+1 (ei: j , _)&}n+1 (_) an (_) 8n+1 (ei: j , _),

one obtains

}n (+)
}n (_)

an&1 (+)=
}n (_)
c}n (+)

an&1 (_)&
}n+1 (_)

}n (_)
:
M

j=1

* j8n (ei: j, +)

_[8*n+1 (ei: j, _)&an (_) 8n+1 (ei: j, _)]. (4.12)
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Finally, by

}n+1 (_)
}n (_)

=
1

- 1&|an (_)|2
�const. for all n # N0

and by the same arguments as applied to the identity in (4.10) we see again
that the sum in (4.12) tends to zero as n � �. Now (4.11) gives

lim
n � �

(an (+)&an (_))=0.

This is the assertion. K

Proof of Theorem 4. Let (=C� "1 and let G be a function analytic in (.
Note that the standard analytic functions defined for the multi-connected
region ( have multi-valued argument in general. The ambiguity of the
argument of a function in ( is characterized as follows (compare [1,
p. 237]): Let #=(#1 , ..., # l) be a vector in Rl. Take the coordinates of # to
be the increments in the argument of a multi-valued function G(z) on
marking circuits of the arcs, i.e.,

#(G)=\... ,
1

2?
q
1j

arg G(z), ...+ . (4.13)

We take the quotient of the function analytic in ( by the equivalence rela-
tion G1 (z)rG2 (z) � #(G1)=#(G2). The classes obtained are denoted by
7# , i.e.,

G(z) # 7# if #=\ ... ,
1

2?
q
1j

arg G(z), ...+ . (4.14)

Next, let Y be the conformal mapping of ( onto the exterior of the unit
disk, i.e.,

Y(z)=exp( g(z, �)+ig~ (z, �)),

where g(z, �) is Green's function for the set C� "1 with pole at � and
g~ (z, �) is a harmonic conjugate. Further, let us set

7n :=&n7#(Y) . (4.15)

Note that by definition (4.13)

#(Y)=(|(11 , �), ..., |(1l , �)), (4.16)
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see e.g. [18, p. 141], where |(1j , �) is the harmonic measure at z=� of
the j th arc 1j . Furthermore, for \ # L1 (1 ) let H2 ((, \, 7#) be the set of
functions G from 7# which are everywhere analytic on ( and for which
|G(z)2 R(z)| has a harmonic majorant. Here, R(z) is the analytic function
without zeros or poles in ( whose modulus on ( is single-valued and
which takes the value \(!) on 1 (see e.g. [18, p. 155] or [1, p. 237]).

For weight-functions \ satisfying the condition

�
1

log \(!)
�

�n!
g(!) |d!|>&� (4.17)

Widom has given the following asymptotic representation of the monic
polynomials Qn (z) of degree n orthogonal with respect to \(!) |d!| on 1
[18, Theorem 12.3]:

Qn (z) C(1)&n Y&n (z)tGn (z) for z # K/(, (4.18)

K compact and C(1) the logarithmic capacity of 1, where Gn #
H2 ((, \, 7n) is the unique solution of the following extremal problem:

&(\, 7n)= inf
G # H2((, \, 7n) |1

|G(!)|2 \(!) |d!|, (4.19)

hence,

&(\, 7n)=|
1

|Gn (!)|2 \(!) |d!|.

Now, in the case under consideration we have !=ei., f (.)=\(!) and
|d!|=d.. Furthermore, let us note that (���n!) g(!) |d!| can be given
explicitly. Indeed, in the proof of Lemma 2 in [14] (the notation in [14]
is slightly different from that one here, R in this paper corresponds to R0

from [14]) we have demonstrated that

�
�n!

g(!) |d!|= } Sl (ei.)

- R(ei.) } d.,

where Sl (z) is the polynomial of degree l uniquely determined by the condi-
tions Sl=S l* , iSl (0)=- R(0), and

|
.2 j+1

.2 j

Sl (ei.)

- R(ei.)
d.=0 for j=1, ..., l&1
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Hence, the condition (4.17) becomes

|
El

log f (.) } Sl (ei.)

- R(e i.) } d.>&�. (4.20)

Since in addition 1 # P(N), i.e., since (3.12) holds, we have by [14, (5.20)
and (5.22)]

{$(.)=
N
2

(e&i((N&l)�2) .U(ei.))(e&i(l�2).Sl (ei.)), (4.21)

where { is defined in (2.7). In view of (4.21) we obtain immediately (com-
pare also [11, Section 3]) that Sl (ei.) has exactly one zero in each interval
(.2j , .2j+1), j=1, ..., l&1, and, using the facts that {(.+2?)={(.) if N is
even and {(.+2?)=&{(.) if N is odd, one zero in (.2l , .1+2?). Since
R(z) is a selfreversed polynomial of degree 2l which vanishes exactly at the
boundary points ei. j, j=1, ..., 2l, of the arcs, we have

e&il.R(ei.)=const `
2l

j=1

sin \.&.j

2 + .

Thus, by the supposed generalized Szego� condition, condition (4.20) and
therefore (4.17) is satisfied. Furthermore, Qn (z)=Pn (z, _) and (4.18)
becomes

Pn (z, _) C(1)&n Y&n (z)tGn (z) for z # K/(. (4.22)

Moreover, the conformal mapping and the logarithmic capacity are
explicitly known [14, see the end of Section 2]:

Y(z)=\T(z)+- R(z) U(z)
L +

1�N

C(1 )= N
- L�2,

where we used the notation from (3.12). In particular, we have

C(1 )N YN(0)=1. (4.23)

Since by assumption |(1j , �)=kj �N, kj # N, for all j=1, ..., l, we obtain
from (4.13)�(4.16)

7k+mN=7k mod 1 for all m # N and k=0, 1, ..., N&1
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and therefore, by (4.19) and the uniqueness of the extremal function,

Gk+mN #Gk for all m # N and k=0, ..., N&1. (4.24)

Now, we only have to evaluate (4.22) at z=0 (recall Pn (0, _)=an&1 (_))
and to apply (4.23) in order to obtain our assertion (3.13) with
a0

k=Gk (0). K
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